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Abstract. By an exact real space renormalization group (RSRG) method, we obtain the 
spectral dimension of the Vicsek snowflake fractal. The result seems to cast some doubt 
on the range of validity of the Einstein relation on the deterministic fractal. 

Although the Einstein relation has been shown to hold for many self-similar structures 
[l-31, its range of validity has been frequently discussed [4,5]. We have no grounds 
to believe that it still holds for non-elastic interaction and plane vibration. Here we 
consider the Vicsek snowflake (vs) (or checkerboard) fractal [6,7] for harmonicanalysis 
[8] to derive its spectral dimension = 2 d f / &  and check the Einstein relation for this 
determinative fractal. Until now, there has been no evidence that this relation fails to 
hold for determinative fractals. The Einstein relation is between the fractal dimension 
dr,  the random walk dimension JW and the resistivity exponent i: 

& = d f + Z  (1) 
& could be related to the spectral dimension by.& = 2&/&. The spectral dimension 

2, appears as a governing exponent in many dynamic processes on both random fractals 
(statistically self-similar) and determinative fractals. We solve the exponent d, for the 
vs fractal by the position space renormalization group (RG) method to treat the critical 
dynamics based on the scaling argument of Rammal and Toulous 181. We start from 
the set of equations of the perpendicular harmonic vibration model on the vs fractal 
(dr=In  5/ln3) as shown in figure 1. 'Note that its equations of motion are actually 

Figure 1. Thcstructurrofthevsfractal.Thccoordin- 
ales illustrate the typical RO decimation for reduced 
frequency At .  
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identical to the diluted Heisenberg ferromagnet at zero temperature [9,10] and similar 
to the master equation of diffusion. Suppose A = m o 2 / k  and o, k, m are, respectively, 
the characteristic frequency, elastic constant and mass. The equation of motion is then 
as follows: 

A A = Z  & . j ( x j - x j )  (2) 

where $ i , j =  1 if i and j are nearest neighbours and $ i . j = O  in other cases. We have 
supposed a set of reduced frequencies {An} corresponding to different characteristic 
vibrations of various lattices in the procedure of lattice scaling: A ,  is the reduced 
frequency for bifurcate points between two quadrafurcate points; A, for bifurcate 
points between a bifurcate point and a quadrafurcate point; A, for bifurcate points 
between two bifurcate points; A4 for the quadrafurcate points in the generator of the 
first stage; As for quadrafurcate points of the second stage (connecting two generators); 
A6 for quadrafurcate points of the third stage, etc. 

Refemng to figure 1, one may see clearly that the characteristic frequencies for 
different lattices may be different. We perform RG decimation on equation (2) with a 
length scaling b = 3. The system thus achieves a dilation by the scaling factor b. The 
outcome of the transformation leads to a set of equations with an exactly identical 
form to equation (2), but with replacement of new {A'.). Considering the symmetry of 
the vs fractal, we proceed with, for example, the decimation procedure according to 
the following channel to approach the recursion relation of A.,: 

AS(X - Z )  =4(X - Z )  - [ ( x ,  +xz+f ,  +&) - (2, + z z + i l  + &)I ( 3 a )  

-U. RG 

AXX -Z)  =4(X -Z)  -(XI + Xz - ZI - Zz). ( 3 b )  

Equation ( 3 6 )  is the RG-transformed equation. Other relations could be obtained by 
similar derivations. Our analysis gives the recursion relation of {An):  

A{ = A:= 2-A[B(4- A4) -2(2-A3)]/4+B(2 - A I )  

A; = A4-2+2(2- A,)/B 

A i  9( A , ,  A z ,  A3,,  A4,  As) = 4  - (4- As)A/B +4(4- A J / B  

~ ( A I , ~ z ,  A,, A6)  

(4) 

A i = W A , ,  ~ Z , A ~ , L ,  

... 

where A = (2-A,)(4- A4)-2 and B = (2 -Az)(2- A?)  -2. 
In order to study the critical behaviour we linearize the above recursion relations 

for the characteristic frequency around the fixed point A * = O .  One must have noticed 
that the scaling relations of A ,  and A2 are identical (A{  = A i ) .  This shows that the 
supposition of different parameters A ,  and A Z  is overlapping. But it does not change 
the maximum eigenvalue of the transforming matrix of {A"). At low frequency, we 
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obtain the transforming matrix A of { A " ] :  - 

L1355 

IO 5 5 0 ... 
2 1 1  0 ... 
4 - 4 2  3 0 
4 - 4 2  0 3 

We can solve the maximum eigenvalue xmiU of M by cut-off approximation to give 
up relations of order n > I in (3). When I + m, the computation gives the limit ,ymax+ 13. 
We also find that the matrix reduces to order I when we suppose AI =Al+, = = . . . 
( I  can be any arbitrary large number). Thus, we can demonstrate that the value of 
xmar, Y wh:+ 11.1". i r  ." i n , b n m A m t  .....-Y'.."'..' nf ". ., I will ..I I h m  I_ ,=rwtlv -,.--.., 1 1  ._. 1 A r t ~ n n l l v  ." .--..,, the ...- trnnsfnnnino ..-.. "_ matrix 

will be equivalent to the case of the three RF parameter space {Al (=A2) ,  A,, AJ=A,= 
. . .)I. Referring to the scaling argument of Rammal and Toulouse [8], one has d, = dr/a 
with a  in(^,..)"* the scaling exponent [3] of frequency. We obtain the spectral 
dimension as 

~ 

( 6 )  

We have the order 2s < dr < d, which is same as that of the family of Sierpinski 
gaskets. 

Now let us turn to the Einstein relation &-= dl+ i, & is related to the spectral 
dimension by the Alexander-Orbach relation: d, = 2d,/&. The scaling of resistance 
is rather simp!c. .As i~dicztcd in figore 2, we C O U ! ~  scz!c !he side r~nistancc ti and 
diagonal resistance t2 .  This consideration gives the following recursion equation: 

- In25 
In 13' 

d,=-  

(:i) =c x3 (7) 

Taking into account the scaling factor b = 3, we find the scaling exponent of 
-~^:^t"..^n t- 1 

I t  is found that the result ( 6 )  and value i do not coincide with the relation 
2dr/d,=drt i It is generally believed that the Einstein relation is satisfied for the 

I C I I D L ( L . I b C  c - 1. 

\ t2/ 

/ \  Figure 2. Renormalization of resistance. Diagonal 
resistances f2 are denoted by the broken lines. 

fl 
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harmonic vibation model on any fractal lattice. There is even an illustration of the 
relation for a long-range interaction model by Maritan and Stella [2]. But the vs fractal 
seems to indicate that it is not generally satisfied. Considering the studies of random 
walks on Vicsek fractals by Guyer [ l l l ,  the conclusion on the Einstein relation is 
contradicting. But, most importantly, the fractal (vs or checkerboard fractal) we 
discussed is really different from theirs, i.e. the X-type fractals. The spectral dimension 
of the two-dimensional X-type fractal can be studied [12] by following the same RG 
procedure; the result agrees with Guyer and does not violate the Einstein relation. So 
it is the vs fractal that attracts interest. It is distinguished from the X Vicsek fractal 
in that it has loops. This is more obvious to random walk problems since some loops 
have only one connecting point with others. We think random walks on this vs fractal 
with the master equation of [13] will confirm our result. 

It should be also pointed out that the overlapping supposition of (An]  does not 
affect the maximum eigenvalue xmar. The value of xmar is also independent of the 
sublattice with different mass m. for the multiatomic fractal (referring to Stinchcombe 
[lo]) or frequency on reflecting in An = m.o:/k, but depends on the characteristic 
structure of the lattice which determines the scaling behaviour. One can suppose Ai to 
be superfluous, but the difference of characteristic frequencies for various sites must 
be considered. Here we need at least three RG parameters (Ai] as a minimal set to 
close a direct renormalization. 

One may remark that the equations of motion for low-frequency Heisenberg spin 
wave dynamics [9,10] are indeed identical to equation (2). By the replacement of 
A + w = o/J, where o corresponds to the characteristic frequency of the spin wave 
and J is the nearest-neighbour exchange, and following the same renormalization 
procedure, one may simply extract the dynamic exponent z =In  131111 3 for diluted 
Heisenberg ferromagnetic system at zero temperature on the vs fractal. Thus, we have 
found an example to prove our supposition of {A.]. Bhattacharya [14] studied the 
critical spin wave dynamics for the Sierpinski gasket-type fractal (STF) and found that 
his result for the spectral dimension for the sTf did not agree with the findings of 
Hilfer and Blumen [13]. Reconsidering this problem we set different lattices with 
different characteristic response frequencies as indicated above. Thew for the hexafur- 
cate point (m,) is distinguished from that of quadrafurcate points (w2).  Recalculating 
the spectral dimension for the STF by the same RG procedure yields is = 2 In 6/1n(90/7), 
which is exactly the same result as that of Hilfer and Blumen [13]. 

In addition, our work is very closely related to that of Ashraff [15]. We propose 
that three reduced characteristic frequencies are required to make the RG parameter 
space closed. Ashraff applied the RG technique to Heisenberg spin dynamics on the 
vs fractal and introduced the next-nearest-neighbour interaction ( J 2 )  because three 
parameters are required to consummate the recursion relation. However, it is found 
that the spectral dimension vanes with the parameters of the high-nearest-neighbour 
interaction [2]. The d, may be changed as J2 is introduced. From another point of 
view, the next-nearest-neighbour yields a model that has no loops at all. For random 
walks the lattice structure is changed and the particle has the possibility of walking 
diagonally. We suppose that it is the loop which effects the surprising result that the 
Einstein relation is violated for the vs fractal. However, the fundamental mechanism 
causing these results needs further study. 

This work was supported by the National Science Foundation. 
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